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a b s t r a c t

A system can accomplish an objective specified in temporal logic while interacting with an unknown,
dynamic but rule-governed environment, by employing grammatical inference and adapting its plan of
action on-line. The purposeful interaction of the systemwith its unknown environment can be described
by a deterministic two-player zero-sum game. Using special new product operations, the whole game
can be expressed with a factored, modular representation. This representation not only offers
computational benefits but also isolates the unknown behavior of the dynamic environment in a
particular subsystem, which then becomes the target of learning. As the fidelity of the identified
environment model increases, the strategy synthesized based on the learned hypothesis converges in
finite time to the one that satisfies the task specification.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

One of the central problems in developing autonomous sys-
tems is to ensure that they satisfy their performance specifications
even when operating in unknown, dynamic and potentially adver-
sarial situations. This problem is not adequately addressed cur-
rently; part of the success of industrial robotics, for instance, is
that robots operate in structured, known, carefully-controlled
environments. The underlying theory that supports robot deploy-
ment and guarantees performance includes stringent assumptions
on the structure and nature of the robots' workspace.

This paper shows how algorithmic game theory and gramma-
tical inference can be jointly utilized to synthesize adaptive control
policies for agents operating in unknown, dynamic, and potentially
adversarial environments with respect to temporal logic con-
straints. In this context, agents exhibit behaviors that can be
captured by some abstract, purely discrete deterministic models,
such as automata, Kripke structures, or transition systems (Clarke
et al., 1999). To a single agent, all other agents become part of an
antagonistic environment. The goal is to synthesize control poli-
cies, or strategies, that ensure that an agent satisfies a temporal

logic specification without fully knowing a priori the environment
which it reacts to.

This type of integration of machine learning with control design
can potentially be applied to the performance analysis and super-
vision of several complex industrial systems. In practice, such
systems are composed of multiple black-box, heterogeneous compo-
nents (Van Kranenburg et al., 2008). Due to imprecise knowledge of
the dynamics of the individual components as well as their specifica-
tions, it is difficult to verify the correctness of supervisory strategies.
This paper proposes a paradigm for (1) constructing a model for the
system using observations and some prior knowledge of its compo-
nents and (2) controlling the overall system in a way that decouples
control from identification. This allows for the application of legacy
supervisory controllers to systems with modified or new compo-
nents. Potential applications include fault diagnosis in transportation
systems (Mortellec et al., 2013), the design of air-traffic control
systems (Whittle et al., 2005), manufacturing (Feng et al., 2007),
and software verification (Ivancic et al., 2011).

From a technical standpoint, much of the work in planning
when the environment dynamics is uncertain can be found in the
context of reinforcement learning (RL) (Sutton and Barto, 1998;
Werbos, 1991; Bertsekas and Tsitsiklis, 1996; Lewis et al., 2012), in
which the entire system is modeled as a Markov decision process
(MDP). When machine learning is applied for multi-agent coordi-
nation or strategy development in cooperative or noncooperative
games in the presence of uncertainty (Brafman and Tennenholtz,
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2003; Kash et al., 2011; Duan et al., 2007; Fang et al., 2014; Wang
and de Silva, 2008), in the vast majority of cases the method of
choice is some variant of RL.

In our formulation, uncertainty is rooted in lack of knowledge,
not in chance. The underlying agent models are not MDPs, but
deterministic transition systems. When environment interaction is
uncontrollable and not probabilistic, a pure two-player game
arises. Such a game cannot be reduced to an MDPs—control
synthesis for an MDPs corresponds to solving a one-player
stochastic game. The two classes of games are fundamentally
different (Chatterjee and Henzinger, 2012).

We approach the learning problem through grammatical infer-
ence (GI), instead of RL. Grammatical inference is of particular
interest to problems involving control synthesis with temporal
logic because it naturally applies to formal objects such as
automata, formal languages, and discrete transition systems and
provides a class of algorithms that identify them. We use a
particular learning paradigm within GI: identification in the limit
from positive data (Gold, 1967). This choice is motivated by the fact
that in our problem formulation the agent observes the unknown
process without being able to query or being otherwise informed
about what cannot happen. Grammatical inference differs from
RL in at least two main aspects: in RL, the sets of states and

transitions of the entire system are known, and the dynamics of
the environment are stochastic; in our problem setting, the
environment is modeled as a deterministic transition system with
unknown states and transition relation. Another conceptual dif-
ference is that RL addresses the question of what actions maximize
a reward related to the given objective, while GI aims at identifying
the unknown context in which the system operates.

Although it might be possible, it is not clear how RL methods
could be applied to the scenarios studied here. One challenge is
how to specify the reward functions with respect to tasks specified
in terms of temporal logic. There is some limited work in this
direction (Thiébaux et al., 2006), but it remains a open question.
Grammatical inference conveniently decouples learning from
planning and control, because it does not dictate the strategy
but merely identifies the unknown components of the dynamics.
Whatever the control method of choice, as GI progressively
increases the fidelity of the model, the effectiveness of the control
strategy is bound to increase too.

The paper is organized as follows. Section 2 provides a general,
high-level overview of the technical formulation and elaborates on
the technical challenges that its development has presented.
Section 3 introduces the relevant notation and terminology and
lays the mathematical foundation for the subsequent technical

Nomenclature

GIM : SEQ-REP a learning algorithm that takes the first i
elements of a presentation and returns a grammar.

ðG; v0Þ an initialized two-player turn-based game with the
initial state v0.

# a pause.
ℓ a literal, which is either an atomic proposition αAAP

or the negation of a proposition :α.
Γ : Q-2Σ an active event function, mapping a state to a set of

actions enabled at that state.
ΓA an active event function of semiautomaton A.
λ the empty string.
B a Boolean variable denoting whose turn it is to play:

B¼ 1 for player 1, B¼ 0 for player 2.
AP a set of atomic logical propositions.
C the set of world states, defined to be the set of all

conjunctions of literals.
G a two-player turn-based game.
Alg a learning algorithm that identifies a game G in the

limit from positive presentation.
AttrðXÞ the attractor for the set X.
LB a labeling function that maps a state qAQ into a

subset of AP.
PrðLÞ the prefixes of a language L.
REP the class of possible grammars.
SAðGIMÞ the set of SAs identifiable in the limit from positive

presentations by the normal-form learner GIM.
SEQ the set of all finitely long initial portions of all possible

presentations of all possible L.
Si a memoryless, deterministic strategy for player i in the

game G.
WSi a winning strategy for player i.
Ω the task specification, given as a logical formula over

AP.
ϕ : N-L [ f#g a positive presentation of L.
ϕ½i� the first iþ1 elements of ϕ.
ρ a run, which is a finite (or infinite) state sequence.
Σ a finite alphabet.

Σn a set of finite sequences with alphabet Σ.
Σω a set of infinite sequences with alphabet Σ.
Σn a set of sequences with alphabet Σ of length n.
Σrn a set of sequences with alphabet Σ of length less than

n.
PostðσÞ the post-condition of action σ, which is a conjunction

of literals.
PreðσÞ the pre-condition of action σ, which is a conjunction of

literals.
Acc the acceptance component of an automaton.
ValvðS1;S2Þ the value of game from v under strategies S1;S2

for players 1 and 2.
Wini the winning region of player i.
Ai ¼ 〈Qi;Σi; Ti;AP; LBi〉normal an LTS captures the dynamics of

the agent (i¼1) or its environment (i¼2).
L the language, which is a subset of Σn.
LðAÞ the language of A.
LðGÞ the language of game G, which is a set of strings that

generates all possible finite runs in G.
LðG; v0Þ the language of an initialized game ðG; v0Þ.
L(G) the language generated by grammar G.
LiðGÞ the language of player iAf1;2g in game G.
LiðG; v0Þ the language of player iAf1;2g in the initialized game

ðG; v0Þ.
P ¼ A1○A2 the turn-based product with A1 and A2.
Q a finite set of states.
Tðq1; σÞ↓ a transition with label σ from q1 is defined.
T : Q � Σ-Q a transition function.
Ui the interaction function, which maps a pair of states

ðqi; qjÞ to the set of actions which player j can no longer
initiate at state qj.

w(i) the iþ1th symbol in a word w.
wAΣω an ω-word.
InfðwÞ the set of symbols occurring infinitely often in w.
lastðwÞ the last symbol of w.
OccðwÞ the set of symbols occurring in w.
N the set of natural numbers.
jwj the length of a string w.
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discussion. Section 4 presents a factor-based algorithm for control
synthesis with respect to temporal logic constraints. In Section 5,
grammatical inference is integrated with control synthesis to
construct a reactive, adaptive controller in an unknown environ-
ment. Here we prove the correctness of the strategy computation
and the convergence of the learner. We demonstrate this conver-
gence using an example case study in Section 6. Section 7 concludes
the paper by reviewing the approach in a more general context and
discusses alternative formulations and future extensions.

2. Overview

The paper deals with the following technical problem.

Problem 1. Consider an agent A1 with a task specification φ,
interacting with an unknown, dynamic, and hostile environment
A2. How can A1 come to know the nature of A2 and use this
knowledge to determine whether a plan of action for A1 exists that
ensures φ is satisfied?

Part of the challenge in the proposed approach to this problem is
the integration of theoretical elements from different fields—particu-
larly, temporal logic control and grammatical inference—into a cohe-
sive methodology. Our approach is to combine the various elements of
the overall system in a modular way. Let us follow Fig. 1: at the high
level, we abstract the concrete system and its dynamical environment
into finite-state transition systems. Then, in order to combine the
system, its task specification, and its unknown dynamic environment,
into a two-player game, we defined novel product operations.

Since the true environment is unknown, the agent hypothe-
sizes a model for it and the game being played. Then, based on the
game hypothesis, the agent synthesizes a strategy (i.e., controller)
to satisfy its specification (i.e., the winning condition). The
environment model may be crude and naive in the beginning,
but as the agent collects more observations, its grammatical
inference module refines the environment model. Under certain
conditions, correct prior knowledge for the model and a charac-
teristic set for the observation data and the model structure, the
fidelity of the continuously updated model increases to a point
where the agent can compute sure-winning strategies to achieve
the goal, whenever these exist.

The advantages of this approach are fourfold. First, we can
exploit the structure of the individual system components so that
the representation of the total game is polynomially smaller in the
number of factors. Second, we show that a winning strategy can be

computed directly from this factored representation of the game.
Third, we can isolate the unknown behavior of the dynamic
environment into a single model, which is the target of the
learning algorithm. Fourth, different types of GI algorithms can
be applied to learn the behavior of the environment under
different conditions without imposing constraints on the method
to be used for control: learning is decoupled from planning.

3. Mathematical preliminaries for formal languages

In this section, we introduce some technical background on
formal languages and automata theory (Hopcroft et al., 2006).
Readers familiar with this material may skip this section on a first
reading and refer to it as needed.

Let Σ denote a fixed, finite alphabet, and Σn, Σrn, Σn, Σω be
sequences over this alphabet of length n, of length less than or
equal to n, of any finite length, and of infinite length, respectively.
The empty string is denoted λ, and the length of string w is denoted
jwj. A language L is a subset of Σn. The prefixes of a language L are
denoted PrðLÞ ¼ fuAΣn∣ð(wALÞð(vAΣnÞ½uv¼w�g. A word wAΣω is
called an ω-word. Given an ω-word w, OccðwÞ denotes the set of
symbols occurring in w, and InfðwÞ is the set of symbols occurring
infinitely often in w. Given a finite word wAΣn, lastðwÞ denotes the
last symbol of w. We refer to the iþ1th symbol in a word w by
writing w(i); the first symbol in w is indexed with i¼0.

An semiautomaton (SA) deterministic in transitions is a tuple
A¼ 〈Q ;Σ; T〉 where Q is a finite set of states, Σ is a finite alphabet,
and T : Q � Σ-Q is the transition function. The transition
Tðq1; σÞ ¼ q2 is also written as q1-

σ
q2, and is expanded recursively

in the usual way. We write Tðq1; σÞ↓ to express that Tðq1; σÞ is
defined. An active event function Γ : Q-2Σ is defined as
ΓðqÞ≔fσAΣ∣Tðq; σÞ↓g. We denote with ΓAð�Þ the active event function
of SA A. A run of A on a word (resp. ω-word) w¼wð0Þwð1Þ…AΣn

(resp. ΣωÞ is a finite (resp. infinite) sequence of states
ρ¼ ρð0Þρð1Þρð2Þ…AQn (resp. Qω) where ρðiÞAQ for each i and
ρðiþ1Þ ¼ TðρðiÞ;wðiÞÞ, iZ0. A run of A on word w is denoted ρw.
An SA A can be completed by adding a state sink such that for all
qAQ , and for all σAΣ n ΓAðqÞ, Tðq; σÞ ¼ sink. For all σAΣ, let
Tðsink; σÞ ¼ sink. This operation ensures that 8ðq; σÞAQ � Σ, Tðq; σÞ↓.

Consider now a quintuple A¼ 〈Q ;Σ; T ; I;Acc〉 where 〈Q ;Σ; T〉 is
an SA deterministic in transitions, I is the set of initial states, and
Acc is the acceptance component. Different types of Accs give rise
to Grädel et al. (2002):

� finite state automaton (FSA), in which case Acc¼ FDQ , and A
accepts wAΣn if the run ρwAQn satisfies ρwð0ÞA I and
lastðρwÞAF , and

� Büchi automata, in which case Acc¼ FDQ , and A accepts
wAΣω if the run ρwAQω satisfies ρwð0ÞA I and InfðρwÞ \ Fa∅.

The set of (in)finite words accepted by A is the language of A,
denoted LðAÞ. An automaton is deterministic if it is deterministic in
transitions and I is a singleton. In this case, with a slight abuse of
notation, we denote with I the single initial state. A deterministic
finite-state automaton with the smallest number of states recogniz-
ing a language L is called a canonical automaton (acceptor) for L.
Unless otherwise specified, we understand that A is the SA obtained
from a FSA A by unmarking the initial state and final states in A.

Let AP be a set of atomic logical propositions. A labeled finite-
state transition system, also known as a Kripke structure (Clarke
et al., 1999), is a tuple TS¼ 〈Q ;Σ; T ;AP; LB〉 where 〈Q ;Σ; T〉 is a SA,
and LB : Q-2AP is a labeling function that maps a state qAQ into
a subset of AP. A Kripke structure can be obtained as an
abstraction of some concrete dynamical system, through a variety

Fig. 1. The architecture of hybrid planning and control with a module for
grammatical inference. The products that combine a model of the system, a model
of a dynamical environment and a temporal logic control objective are defined in
text.
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of different abstraction methods (Tiwari, 2008; Clarke et al., 2003;
Alur et al., 2003; Abate et al., 2011).

Given a set of atomic propositions, we use Linear Temporal
Logic (LTL) formulae (Emerson, 1990) to specify a set of desired
system properties such as safety, reachability, and liveness. In
particular, we consider a fragment of LTL; a formula in this
fragment can be equivalently expressed as a language over 2AP ,
accepted by a deterministic FSA (DFA) or a deterministic Büchi
automaton. In cases when the specification is represented by a DFA,
we have a reachability objective; for a DBA, it is Büchi.

4. Strategizing in a game using its factors

In this section, we see how the winning strategies (i.e.,
controllers) of a player with reachability or Büchi objectives can
be computed, if they exist. Though the solution to the strategy
synthesis problem for two-player zero-sum games with these
objectives is known (Grädel et al., 2002), the algorithms comput-
ing these strategies take a complete representation of the game as
input. This poses problems when not every aspect of the game is
known in advance. Therefore, Section 5 will revisit this problem
after relaxing the requirement of full knowledge of the game.

4.1. Two-player deterministic games

First, we briefly review the definition of deterministic, turn-
based, two-player zero-sum games with perfect information and
the solution of such games. For more details, the reader is referred
to Grädel et al. (2002).

Definition 1 (Grädel et al., 2002). A two-player turn-based zero-
sum game is a tuple G¼ 〈V1 [ V2, Σ1 [ Σ2; T ; I; F〉, where (1) Vi is
the set of states where player imoves, (2) Σi is the set of actions for
player i, V1 \ V2 ¼ Σ1 \ Σ2 ¼∅, V ¼ V1 [ V2; (3) T : Vi � Σi-Vj is
the transition function where ði; jÞAfð1;2Þ; ð2;1Þg; (4) I is the set of
initial game states, and (5) FDV1 [ V2 is the winning condition: in
reachability (resp. safety or Büchi) games: a run ρ is winning for
player 1 if OccðρÞ \ Fa∅ (resp. OccðρÞDF for safety, and InfðρÞ \
Fa∅ for Büchi).

An initialized game, denoted ðG; v0Þ, is the game G with a
designated initial state v0A I. A memoryless, deterministic strategy
for player i in game G is a function Si : Vi-Σi which for a given
state vAVi, outputs an action σAΣi enabled from v for player i to
take. Player i follows strategy Si if it plays the action SiðvÞ at state v.

For reachability and Büchi games, a memoryless winning
strategy always exists for one of the players (Grädel et al., 2002).
Thus, in this paper, when a strategy is mentioned, we mean
memoryless, deterministic strategy. A strategy WSi is winning for
player i, if and only if for every finite prefix ρAVnVi in ðG; v0Þ, if
player i follows WSi, then player i wins the game, obtains a payoff
1, and its opponent obtains a payoff �1. The winning region of
player i, denoted Wini, is the set of states from which she has a
winning strategy.

Reachability and Büchi games are determined, and only one
player has a pure winning strategy. For these games, strategies are
deterministic because the initial configuration of the game deter-
mines exactly one of two players has a winning strategy (Grädel et
al., 2002; Perrin and Éric Pin, 2004). Given the game starting at the
state vAV , policy Si for player i, i¼1,2, the value of the game is
ValvðS1;S2ÞAfð1; �1Þ; ð0;0Þ; ð�1;1Þg, where ðu1;u2Þ is the payoff
vector, u1 for player 1 and u2 for player 2. For any state v, if neither
player plays his winning strategy even if it is in his winning region,
then ValvðS1;S2Þ ¼ ð0;0Þ. If v is in the winning region of player 1,
for any strategy S2 for player 2, ValvðWS1;S2Þ ¼ ð1; �1Þ. If v is in
the winning region of player 2, then for any strategy S1 for player

1, ValvðS1;WS2Þ ¼ ð�1;1Þ. By the worst case assumption on the
behavior of player 2, player 2 follows WS2 whenever WS2 is
defined from the current state. If v is in the winning region of
player 1 yet player 1 follows S1aWS1, then it will run into a state
in Win2 for which WS2 is defined and the value of the game under
S1;WS2 is again ð�1;1Þ.

For a game G¼ 〈V1 [ V2, Σ1 [ Σ2; T ; I; F〉 and for a set of states
XDV , the attractor (Grädel et al., 2002) of X, denoted AttrðXÞ, is the
largest set of states W+X in G fromwhich player 1 can force a run
into X. It is defined recursively as follows. Let W0 ¼ X and set

Wiþ1≔Wi [ fvAV1∣ð(σAΓGðvÞÞ½Tðv; σÞAWi�g
[fvAV2∣ð8σAΓGðqÞÞ½Tðv; σÞAWi�g; for iZ0; iAN: ð1Þ

Let WS1ðvÞ ¼ σ for the state vAV1 and action σAΓGðvÞ
identified above.

Since G is finite, there exists a smallest mAN such that
Wmþ1 ¼Wm ¼AttrðXÞ and the strategy WS1 obtained above
ensures player 1 can reach a state in X in finitely many steps.

If G is a reachability game, the winning region of player 1 is
Win1 ¼AttrðFÞ and the winning region of player 2 is Win2 ¼
V nWin1. Player 1 has a memoryless winning strategy if the game
starts at some initial state v0AWin1 \ I. In the case where G is a
Büchi game, the winning region of player 1,Win1, is the attractor of
a recurrent set, which is the set of states player 1 can force the
game to visit infinitely often (Grädel et al., 2002). For both
reachability and Büchi games, the attractor is central to determin-
ing the winning region of player 1. The time complexity of solving
reachability and Büchi games are OðmþnÞ and OðnðmþnÞÞ, respec-
tively, wherem is the total number of transitions and n¼ JV J in G.

4.2. Constructing the game

Let AP be the set of atomic propositions describing world states
(or the state of the combined agent-environment system). Given
AP, a literal ℓ is defined to be either an atomic proposition αAAP
or the negation of a proposition :α. The set of world states C
is defined to be the set of all conjunctions of literals, i.e.
C¼ fc¼ ℓ14ℓ2…4ℓn∣ð(αAAPÞð8 iA ½1;…;n�Þ ½ℓi ¼ α3ℓi ¼:α�g,
such that, for any cAC, each proposition in AP appears at
most once.

Assume now that the behavior of both the agent (player 1) and
its environment (player 2) can be captured by some labeled
transition system (LTS), A1 ¼ 〈Q1;Σ1; T1;AP; LB1〉 for player 1, and
A2 ¼ 〈Q2;Σ2; T2;AP; LB2〉, for player 2, where for i¼1,2, each
component 〈Qi;Σi; Ti〉 is a SA, and LBi : Qi-C is a labeling function.
We assume the actions of both players have conditional effects
over AP, which means that an action σAΣi can be taken if a
certain pre-condition PreðσÞAC over AP is satisfied; then after the
action is concluded, a certain post-condition PostðσÞAC is known
to be satisfied.

The labeled transition system Ai resembles a Kripke structure
over AP, only here the definition of labeling function is slightly
different. For any σAΓAi

ðqÞ, LBiðqÞ⟹PreðσÞ, and for any σAΣi and
qAQi, if there exists q0AQi such that Tiðq0; σÞ ¼ q, then we have
LBiðqÞ⟹PostðσÞ.

Without loss of generality, we assume that the alphabets of A1

and A2 are disjoint, i.e. Σ1 \ Σ2 ¼∅. Player i can give up his turn, in
which case she “plays” a generic (silent) symbol ϵAΣi. In the
specific games discussed in this paper, player 1 is not allowed to
give up turns (since it would be disadvantageous to do so), but
player 2 (the adversary) can. Therefore, we have ϵ=2Σ1 and ϵAΣ2.

To capture how each player can interfere with the other,
we define the interaction functions Ui : Qi � Qj-2Σj , for ði; jÞA
fð1;2Þ; ð2;1Þg as
Uiðqi; qjÞ ¼ faAΓAj

ðqjÞ∣LBiðqiÞ4LBjðqjÞ⟹:PreðaÞg:
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An interaction function Ui maps a pair of states ðqi; qjÞ to the set of
actions which player j can no longer initiate at state qj.

Definition 2 (Turn-based product). Given a LTS for each player,
A1 ¼ 〈Q1;Σ1; T1;AP; LB1〉 and A2 ¼ 〈Q2;Σ2; T2;AP; LB1〉, and their
interacting functions U1;U2, the turn-based product P ¼ 〈Qp;Σ1 [
Σ2; Tp;AP; LBp〉 is an LTS denoted A1○A2, defined as follows:

Qp ¼Q1 � Q2 � f0;1g is the set of states, where the last
component is a Boolean variable BAf0;1g denoting whose turn
it is to play: B¼ 1 for player 1, B¼ 0 for player 2.

Tp is the transition relation. Tpððq1; q2;BÞ; σÞ ¼ ðq01; q2;0Þ if
B¼ 1; q01 ¼ T1ðq1; σÞ, with σ=2U2ðq2; q1Þ and Tpððq1; q2;BÞ; σÞ
¼ ðq1; q02;1Þ if B¼ 0; q02 ¼ T2ðq2; σÞ, with σ=2U1ðq1; q2Þ.

LBp : Qp-C is the labeling function, where for ðq1; q2;BÞ,
LBpðq1; q2;BÞ ¼ LB1ðq1Þ4LB2ðq2Þ.

The time complexity of constructing P is OðJQ1 � Q2 J � kÞ, where
k¼maxðJΣ1 J ; JΣ2 J Þ.

If one includes a silent action ϵ in Σi for i¼1,2, the players may
not necessarily play in turns—as in the specific case of agent-
environment interaction considered here. We let PreðϵÞ ¼
PostðϵÞ ¼ True, that is, we assume that an ϵ action cannot change
the world state.

The task specification is given as a logical formula Ω over AP.
Through the labeling function LBp, Ω can take the form of a
language over Qp, accepted by a completed deterministic automaton
As ¼ 〈S;Qp; Ts; Is; Fs〉 where sinkAS. Intuitively, the task specifica-
tion encoded in As specifies a set of histories over the world states.
Here subscript s distinguishes As as the automaton for the
system's specification—the specification automaton.

The turn-based product P gives snapshots of different stages in
a game. It does not capture any of the game history that led to this
stage. We overcome the lack of memory in P by using another
product operation.

Definition 3 (Two-player turn-based game automaton). Given the
turn-based product P ¼ 〈Qp;Σ1 [ Σ2; Tp;AP; LBp〉 and the specifi-
cation automaton As ¼ 〈S;Qp; Ts; Is; Fs〉 that encodes formula φ, the
two-player turn-based game automaton is a (special) product of P and
As, denoted G¼ P⋉As ¼ ðA1○A2Þ⋉As ¼ 〈V1 [ V2;Σ1 [ Σ2; T ; I; F〉,
such that

V1DQ1 � Q2 � f1g � S is the set of states where player 1 makes
a move and V2DQ1 � Q2 � f0g � S is the set of states where player

2 makes a move. We write V ¼defV1 [ V2.

Σi is the set of actions of player iAf1;2g. We write Σ ¼defΣ1 [ Σ2.
T is the transition relation defined as follows:

ð8ðq1; q2;B; sÞAVÞ½ð8σAΓPððq1; q2;BÞÞÞ
½Tpððq1; q2;BÞ; σÞ ¼ ðq01; q02;B0Þ 4 Tsðs; ðq01; q02;B0ÞÞ ¼ s0

⟹Tððq1; q2;B; sÞ; σÞ ¼ ðq01; q02;B0; s0Þ��:
The semantics of the transition relation is defined as follows: given
a state ðq1; q2;B; sÞ, if there exists an action σ enabled at ðq1; q2;BÞ
in the turn-based product, and Tpððq1; q2;BÞ; σÞ ¼ ðq01; q02;B0Þ, then
by taking the action σ, the game arrives at a state ðq01; q02;B0; s0Þ.
State s0 ¼ Tsðs; ðq01; q02;BÞÞ keeps track of the progress made in this
transition with respect to the objective expressed in As and the
previous state s in As.

I¼ fðq1; q2;1; sÞAV ∣s¼ TsðIs; ðq1; q2;1ÞÞg is the set of possible
initial game states.

F ¼ fðq1; q2;B; sÞAV ∣sAFsg is the winning condition. If As is a
FSA and game G is a reachability game, then a run ρAVn is winning
for player 1 iff lastðρÞAF; if As is a DBA, and the game is a Büchi
game, then a run ρAVω is winning for player 1 iff InfðρÞ \ Fa∅.

The reachability (resp. Büchi) objective for the system is expressed
by formula φ. We say player 1 achieves its reachability (resp.
Büchi) objective if there exists a winning strategy for player 1 in

the corresponding reachability (resp. Büchi) game. With P and As

the game automaton G is constructed in time OðJQp � SJ �mÞ
where m is the number of transitions in P.

4.3. Synthesis using the game's factors

Given G, the winning strategy of player 1, if it exists, can be
computed with the methods of Section 4.1. Noting that G is built from
separate components (factors) G¼ ðA1○A2Þ⋉As, a natural question to
ask is whether there exists a method for computing the winning
strategy WS1 without obtaining the whole game automaton G: can
WS1 be computed using the factors A1;A2;As of G? The answer is yes.
The attractor can be computed for any XDQ1 � Q2 � f1;0g � S using
A1;A2, and As by recasting its definition in terms of these factors, the
interacting functions, and the product operations.

Theorem 1. Consider a game G¼ ðA1○A2Þ⋉As with states VDQ1 �
Q2 � f1;0g � S and some XDV. Let Y0 ¼ X and

Ynþ1 ¼ Yn [ fðq1; q2;1; sÞ∣ð(σAΣ1Þ½T1ðq1; σÞ
¼ q014Tsðs; ðq01; q2;0ÞÞ ¼ s04σ=2U2ðq2; q1Þ4ðq01; q2;0; s0ÞAYn �g

[fðq1; q2;0; sÞ∣ð8σAΣ2Þ½T1ðq2; σÞ ¼ q024Tsðs; ðq1; q02;1ÞÞ ¼ s0

4σ=2U1ðq1; q2Þ4 ðq1; q02;1; s0ÞAYn�g: ð2Þ
Let W0;W1;…, be the sequence of sets of states obtained from (1) on
page 9 with W0 ¼ X. Then for all nAN, Yn¼Wn.

Proof. The proof is by induction on n. First given
XDQ1 � Q2 � f1;0g � S, X \ VDV is the set of reachable states
in G. W0 ¼ X \ V ¼ Y0 \ V . Next we assume Wn ¼ Yn \ V and
show Wnþ1 ¼ Ynþ1 \ V . Consider any v¼ ðq1; q2;B; sÞAYnþ1 \ V:

Case 1. vAYn \ V . Then vAWn and therefore belongs to Wnþ1.
Case 2. v=2Yn \ V and B¼ 1. Then (σAΣ1, σ=2U2ðq2; q1Þ such that

T1ðq1; σÞ ¼ q01 and Tsðs; ðq01; q2;0ÞÞ ¼ s0 and v0 ¼ ðq01; q2;0; s0Þ
AYn.Moreover, vAV implies v0AV as v0 is reachable from
v. Hence v0AYn \ V . By definition of the products ○and ⋉,
it follows that σAΓG and Tðv; σÞ ¼ v0AWn. Therefore
vAWnþ1.

Case 3. v=2Yn \ V and B¼ 0. The argument here is similar to
case 2.

The cases are exhaustive and in each case vAWnþ1. Hence
Ynþ1DWnþ1. The argument that Wnþ1DYnþ1 follows
similarly. □

Corollary 1. There is an mAN such that the fixed point Ymþ1 ¼ Ym

coincides with AttrðXÞ.
Theorem 1 and its corollary show that the computation of the

attractor AttrðXÞ for a given set of states X can be achieved using
the individual factors of the game. Thus it is not necessary to
compute the game automaton G, an advantage since G can be
significantly larger in size than any of its factors.

Below is a procedure which implements the factor-based
method to compute the attractor. Given XDQ1 � Q2 � f1;0g � S,
let Y0 ¼ X, and Ynþ1 is computed from Yn in two-steps:

1. let PreðYnÞ ¼ ⋃
vAYn

PreðvÞ where Preððq1; q2;B; sÞÞ ¼
B¼ 1 :

fðq1; q02;0; s0Þ∣Tsðs0; ðq1; q2;1ÞÞ ¼ s4 ð(σAΣ2 n U1ðq1; q02ÞÞ½T2ðq02; σÞ ¼ q2�g;
B¼ 0 :

fðq01; q2;1; s0Þ∣Tsðs0; ðq1; q2;0ÞÞ ¼ s4 ð(σAΣ1 n U2ðq2; q01ÞÞ½T1ðq01; σÞ ¼ q1�g:

8>>>><
>>>>:

ð3Þ
In other words, PreðYnÞ includes a set of states of G, from each
of which there exists at least one outgoing transition that
leads to a state in Yn.
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2. Ynþ1 ¼ Yn [ fPreðYnÞ n fðq1; q2;0; sÞAPreðYnÞ∣ð (σAΣ2 n U1ðq1; q2ÞÞ
½ T2ðq2; σÞ ¼ q024Tsðs; ðq1; q02;1ÞÞ ¼ s04 ðq1; q02;1; s0Þ=2Yn�gg:

That is, given state vAPreðYnÞ where player 2 makes a move,
if there exists at least one transition from v that leads to a
state outside Yn, then v is not included in Ynþ1. The fixpoint is
Ym ¼ Ymþ1 ¼ Y and Y \ V ¼AttrðX \ VÞ.

Since the winning region of a Büchi game is in fact the attractor of
a recurrent target state (see Grädel et al., 2002), for both reach-
ability and Büchi games the winning region of player 1, Win1, can
be computed using the factors. This method exploits the defini-
tions of the two products and the factors of G to directly compute
the attractor for a given set of states. WS1 is the same as if G had
been computed. The reduction in computational complexity when
computing the winning region is due to the fact that a state in
Q1 � Q2 � f0;1g � S is searched only when it is in the winning
region. In the worst case, the winning region Win1 includes the
whole state set of G, and in this case the factor-based method
offers no computational benefit.

5. Identifying the game

Player 1 can accomplish her task if and only if (1) she has full
knowledge of the dynamics of player 2, and (2) the game starts at
the initial state in Win1 \ I. The objective of this section is to show
how player 1 can learn the true nature of the game she is playing,
if player 2 is rule-governed. We first introduce the notion of
identification in the limit of semiautomata and show that, provided
the true model of player 2 is identifiable in the limit in this way,
player 1 can learn the game in the limit and then plan her actions
effectively.

5.1. Identification in the limit from positive presentations

We start with some background on the concept of identifica-
tion in the limit from positive presentations. Informally, a positive
presentation of a language L is a sequence of words belonging to
the language, interspersed with pauses (i.e., moments in time
when no information is forthcoming). Formally, a positive presen-
tation of L is a total function ϕ : N-L [ f#g, where # denotes a
pause, such that for every wAL, there exists nAN such that
ϕðnÞ ¼w (Jain et al., 1999). A presentation ϕ can be understood
as an infinite sequence ϕð0Þϕð1Þ⋯ that contains every element of L.
Let ϕ½i� � fϕðkÞgik ¼ 0 � ϕð0Þϕð1Þ…ϕðiÞ denote the first iþ1 elements
of ϕ, and let SEQ denote the set of all finitely long initial portions
of all possible presentations of all possible L.

Grammars are finite representations of potentially infinite
languages. We denote with REP the class of possible grammars.
Let L(G) be the language generated by grammar G. A learner
(otherwise referred to as a learning algorithm, GIM) takes the first
i elements of a presentation and returns a grammar:
GIM : SEQ-REP. The grammar returned by GIM represents the
learner's hypothesis of the language.

A learner GIM identifies in the limit from positive presentations a
class of languages L if and only if for all LAL, for all presentations
ϕ of L, there exists a nAN such that for all mZn, GIMðϕ½m�Þ ¼ G
and LðGÞ ¼ L (Gold, 1967). When GIM converges on ϕ this way, we
write GIMðϕÞ ¼ G. The learner does not necessarily return the
target grammar, but rather one that generates the same language
as the target (i.e., the two grammars are language-equivalent.) For
distinct presentations of L, the language-equivalent grammars
returned by GIM may also be distinct.

To preclude this latter possibility, in this paper we consider
normal-form learners. A GIM which identifies L in the limit from

positive presentations is a normal-form learner if for all languages
LAL and for all distinct presentations ϕ;ϕ0 of L, GIMðϕÞ ¼GIMðϕ0Þ.
Note that any learner for a class of regular languages can be
converted into a normal-form learner by transforming its output
grammars into canonical automata.

A characterization of the language classes that are identifiable
in the limit from positive data is available in Angluin (1980). See
also Jain et al. (1999) and de la Higuera (2010) for additional
details about this learning paradigm and a comparison to
alternatives.

5.2. What game am I playing?

We have seen that synthesizing a strategy has a solution if
player 1 has full knowledge of the game being played. Suppose,
however, that player 1 has knowledge of her own capabilities
and objective, but does not have full knowledge of the capabilities
of player 2. How can player 1 plan effectively given her uncertainty
about the game she is playing? Here we let player 1 make
inferences about the game over time based on the actions of
player 2. While player 1 may not make the best moves at first,
given enough observations, she will eventually determine which
game is being played.

In order to define learning of games, it is necessary to be clear
about the kind of data presentations learners must succeed on.
This means being equally clear about the “language of a game.”
Intuitively, the data available to game-learners should be initial,
finite sequences of game-play. Therefore we define the language of
a game G to be LðGÞ ¼ fwAΣn∣TðI;wÞ↓g, that is, a set of strings that
generates all possible finite runs in G.

The language of an initialized game ðG; v0Þ is defined as
LðG; v0Þ ¼ fwAΣn∣Tðv0;wÞ↓g. Note that prefixes of ω-languages of
deterministic Büchi automata form a regular languages (Perrin and
Éric Pin, 2004); therefore, for the kinds of winning conditions and
games considered in this paper, this definition always defines a
regular language. Observe further that languages of games are
always prefix-closed. Under this definition, a learner cannot
distinguish Büchi games from reachability games since both
describe regular languages. With respect to the language of a
game LðGÞ, the projection of LðGÞ on Σi, denoted LiðGÞ, is the
language of player iAf1;2g in game G.

The following definition makes explicit the idea of learning
two–player deterministic games over time.

Definition 4. An algorithm Alg identifies G in the limit from positive
presentations if and only if for all positive presentations ϕ of LðGÞ,
there is a mAN such that for all nZm, Algðϕ½n�Þ ¼ G. Algorithm Alg

identifies a class of games GAMES in the limit from positive
presentations if and only if, for every GAGAMES, Alg identifies G
in the limit from positive presentations.

The similarities between Definition 4 and identification in the
limit from positive presentations of languages (Gold, 1967) should
be clear. However, there is an important difference. Definition 4
requires the learning algorithm to return the target game, not just
a language-equivalent one, which motivates us to seek solutions in
the form of a normal-form learner. This is driven in part by the fact
that our definition of the language of a game above does not
distinguish between Büchi and reachability games.

The question now is whether there are algorithms that can
identify classes of games in the limit from positive presentations of
their plays. The next section shows how this problem reduces to
the problem of identification of languages in the limit from
positive data under certain conditions. Thus, for every class of
formal languages identifiable in the limit from positive data, there
are corresponding classes of games which are also identifiable.
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5.3. Incorporating grammatical inference

The whole class of regular languages is not identifiable in the
limit from positive data (Gold, 1967), and so player 1 may
eventually have to employ a grammatical inference module GIM

which learns some subclass of the regular languages. This will be
of little solace if the correct model of player 2 is outside this
subclass. Preferably, the choice of learning algorithm should be
made based on some kind of prior knowledge of player 2.1 We are
not concerned with the case when the model to be learned falls
outside of the class of models learnable by a GIM; it would be
unreasonable to ask an algorithm to perform on a case outside its
domain of validity.2 Rather, we focus on demonstrating that when
the true model is learnable through a GIM, strategies can be
computed and eventually applied effectively as if the model were
known in advance.

Definition 5. Let L be a class of languages identifiable in the limit
from positive presentation by a normal-form learner GIM, the
output of which is an FSA. Then we say that an SA A¼ 〈Q ;Σ; T〉,
where sink=2Q , is identifiable in the limit from positive presenta-
tions if for any q0AQ , the language accepted by FSA
A¼ 〈Q ;Σ; T ; q0;Q 〉 is in L, and given a positive presentation ϕ of
LðAÞ, there exists an mAN such that 8nZm, GIMðϕ½m�Þ ¼
GIMðϕ½n�Þ ¼A. The learner GIMSA for SA A is constructed from
the output of GIM by unmarking the initial and final states.

Let SAðGIMÞ be the set of SAs identifiable in the limit from positive
presentations by the normal-form learner GIM.

Now given a SA A1, a specification automaton As, and a class of
semiautomata SAs, define the class of games

GAMESðA1;As;SAsÞ ¼ fG∣ð(A2ASAÞ½G¼ ðA1○A2Þ⋉As�g:
For this class of games we have the following result.

Theorem 2. If, for all A2ASAðGIMÞ, there exists A2ArangeðGIMÞ
such that LðA2Þ ¼ L2ððA1○A2Þ⋉AsÞ, then GAMESðA1;As;SAðGIMÞÞ is
identifiable in the limit from positive presentations.

Proof. For any game GAGAMESðA1;As;SAðGIMÞÞ and any data
presentation ϕ of LðGÞ, denote with ϕ2ðnÞ for nAN the projection of
ϕðnÞ on Σ2. Then define a learning algorithm Alg as follows:

8ϕ; 8nAN; Algðϕ½n�Þ ¼ ðA1○GIMSAðϕ2½n�ÞÞ⋉As:

We show that Alg identifies GAMESðA1;As;SAðGIMÞÞ in the limit.
Consider any game GAGAMESðA1;As;SAðGIMÞÞ. Since G is in

GAMES, there is an A2ASAðGIMÞ such that G¼ ðA1○A2Þ⋉As.
Consider now any data presentation ϕ of LðGÞ. Then ϕ2 is a data

presentation of L2ðGÞ. By assumption, there exists A2A rangeðGIMÞ
such that LðA2Þ ¼ L2ðGÞ. Thus ϕ2 is also a data presentation of
LðA2Þ. Therefore, there is mAN such that for all nZm,
GIMSAðϕ2½n�ÞÞ ¼ A2. Consequently, there is m0 ¼ 2m such that for
all nZm0, Algðϕ½n�Þ ¼ ðA1○A2Þ⋉As ¼ G.

Since G and ϕ are selected arbitrarily, the proof is
completed. □

Once the learning algorithm identifies the game, we can ensure
that the controller synthesized based on the hypothesis of player
1 is correct and wins the game, no matter the strategy of her
opponent. The convergence of the control law can occur prior to
that of the learning algorithm; control strategies can still be
effective even if computed based on slightly inaccurate game
hypotheses.

5.4. Online adaptive synthesis

This section shows how strategies can adapt automatically
during play in repeated games. A proof is given that through this
process the strategy of player 1 eventually converges to a winning
one, whenever the latter exists. For this to happen, we need to
assume that the game can be played indefinitely, and that player
2 keeps playing his best even when he finds himself in a losing
position.

While updating the hypothesis for the opponent dynamics by
observing game plays, the agent updates her strategy as shown in
Algorithm 1 on page 22. Let us walk through the steps of the
algorithm, making references to the corresponding line numbers
in Algorithm 1. We start the game at a random initial state v0A I,
and player 1 computes a winning strategy in its hypothesized
game (line 3). When the current state is within the hypothesized
winning region of player 1, the player takes the action indicated by
her winning strategy (line 9). Otherwise, there are two possibi-
lities for player 1: (i) the current state is actually in the true
winning region, but the incomplete knowledge of the opponent
model misclassified it, or (ii) the current state is indeed out of the
true winning region. In any case, player 1 can consider exploring
the game with a random action with some probability p (line 14),
in which case she can observe the response of player 2 and update
her opponent's model (line 17). Alternatively, and with probability
1�p, she can resign. Then the game is restarted from a random
initial state (line 12).

If the repeated game is played in this way, we can show that
player 1 eventually learns the true nature of the game and is
therefore capable of winning the game when possible.

1 In practice, another option is to equip player 1 with multiple learning
algorithms which are each geared toward a different subclass of regular languages.
Player 1 can then try to leverage the multiple hypotheses in some fashion.

2 de la Higuera (2010) quotes Charles Babbage at the beginning of chapter 19:
On two occasions I have been asked [by members of Parliament], ‘Pray, Mr.
Babbage, if you put into the machine wrong figures, will the right answers
come out?’ I am not able rightly to apprehend the kind of confusion of ideas
that could provoke such a question.
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Algorithm 1. LearnToWin.

For an initialized game ðG; v0Þ, let L2ðG; v0Þ be the language of
player 2 in ðG; v0Þ. Then a grammatical inference module, when
presented with the actions of player 2 in repeated gameplay, will
eventually converge to a language that captures that player's
behavior:

Proposition 1. For game ðG; v0Þ, and for any xAL2ðG; v0Þ, there exists
kAN such that 8mZk, xAL2ðGðmÞ; v0Þ.

Proof. Consider an arbitrary xAL2ðG; v0Þ. There can be two cases:

Case v0 =2WinðiÞ1 By definition of L2ðG; v0Þ, there exists an inter-
leaving action sequence w¼ σ0σ1…σnALðG; v0Þ such that the
projection of w onto Σ2 is x. Player 1 makes a move at random
with probability p, and the chance that player 1 selects σ0 is
γZp=m, wherem is the maximal number of all possible actions for
player 1 or 2 for all game states, i.e., m¼maxvAV JfσAΣ∣Tðv; σÞ↓gJ .
Conditioned on player 1 playing σ0, player 2 plays σ1 with
probability greater or equal to 1=m. Then inductively, the prob-
ability of the finite action sequence being w is ηZminðγ;1=mÞ Jw J .
Furthermore, since there is no upper bound on the number of
games to be repeated, the probability of never playing w is
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limN-1ð1�ηÞN ¼ 0 where n is the number of games played. Thus
eventually w will be played and the learning algorithmwill update
the hypothesis to GðkÞ for some k4 i. Since wALðGðkÞ; v0Þ, it will be
xAL2ðGðkÞ; v0Þ.

Case v0AWinðiÞ1 whatever player 2 plays, if xAL2ðG; v0Þ, then x
will be observed by player 1 and the hypothesis is updated.
Otherwise, if v0 =2Win1, then player 2 will play to win, and player
1 will realize that v0 =2WinðkÞ1 at some kZ i. Since the game is
repeated, in the next round the first case applies. □

Basically, the exploratory moves made by player 1 ensure that
eventually a positive presentation of L2ðG; v0Þ is obtained.

Fig. 2 illustrates how the identification in the limit of games
evolves, following the identification of the formal language asso-
ciated with the dynamics of player 2. This is essentially what goes
on at the high level of the architecture shown in Fig. 1, page 5.
Through interactions with player 2, player 1 observes the discrete
evolution ϕ2ðiÞ of the dynamics of player 2. She uses the GIM to
construct and update a hypothesized model AðiÞ

2 , together with the
labeling function LB2, and subsequently updates the interacting
functions U1 and U2. Based on the interacting functions and the
updated model for player 2, player 1 constructs a hypothesis
(model for) GðiÞ, capturing her best guess for the game being
played, and uses this model to devise a winning strategy WSðiÞ

1 . As
the model of player 2 A2 converges asymptotically to the true one,
the winning strategy becomes increasingly more effective. In the
limit, player 1 is guaranteed to learn the game she plays and win
when the game's initial state is in Win1.

6. Case study

6.1. The game and its class

We analyze a specific case which is representative of a class of
deterministic two-player turn-based games with perfect informa-
tion. This class of games is chosen because it is one of the simplest,
yet non-trivial classes still capable of illustrating the main features
of our analysis. Within this class there are games in which only
one player has a winning strategy given the initial state.

The game being played is a repeated game; that is, the same
stage game is being played again and again, restarting each time
one of the players wins or resigns. The stage game takes place in
the triangular3 “apartment” configuration of Fig. 3. In this game
the purpose of player 1, which in our simulation and experimental
implementations is realized as a small mobile robot, is to visit all
four rooms. The four rooms are connected with six doors that are
controlled by player 2. Player 2 can close two doors at any given
time, according to fixed rules that determine which door pairs are
allowed to be closed and how the transition from one pair to the

next is to take place. Player 2 is played either by a computer or a
human in simulations, and by a human in the actual experiments.

When it is his turn, player 2 may open and close doors so that
again exactly two doors are closed, or to keep the currently closed
doors closed for another turn. Table 1 on page 26 shows three
possible rule regimes for player 2 (others are possible).

In general, these constraints can be specified as any set of door
pairs that can be closed at the same time.

Depending on the constraints on player 2, several different
games can be played. An additional parameter of the game is its
initial configuration. The games begin with the robot in a room
with exactly two doors closed; these must be among those player
2 can close. We assume player 1 cannot choose her initial location,
and that player 2 cannot choose which of the allowable pairs of
doors is closed. In our simulations, the starting configuration is
determined randomly.

6.2. Factoring the game

Let the set of atomic propositions describing the world states be

AP ¼ fαi : robot in room iAf1;2;3;4gg[
fdij : the door connecting rooms i and j is open;

ði; jÞAfð1;2Þ; ð1;3Þ; ð1;4Þ; ð2;3Þ; ð2;4Þ; ð3;4Þgg:

The robot starts the game under the naive assumption that all
open doors will remain open. The LTS for player 1 is
A1 ¼ 〈Q1;Σ1; T1;AP; LB1〉 where Q1 ¼ f1;2;3;4g ¼ Σ1, where each
element is associated with a controller that steers the robot to the
corresponding room; the transition function is defined as T1ði; jÞ ¼ j
for ði; jÞAfð1;2Þ; ð1;3Þ; ð1;4Þ; ð2;1Þ; ð2;3Þ, ð2;4Þ; ð3;1Þ; ð3;2Þ, ð3;4Þ;
ð4;1Þ; ð4;2Þ; ð4;3Þg; the labeling function is same for all qAQ ,
LB1ðiÞ ¼ αi4 ð4 ðj;kÞA fð1;2Þ;ð1;3Þ;ð1;4Þ;ð2;3Þ;ð2;4Þ;ð3;4ÞgdjkÞ. We abuse notation
and denote the SA extracted from LTS Ai with the same symbol;
the corresponding SA is the same as the LTS it came from, less AP
and LB1.

Fig. 4 (left) gives a graphical representation of A1 after the state
and transition relabeling, representing that with all doors open,
the robot can move from any room to any other room by initiating
the appropriate motion controller.

Fig. 2. Learning and planning with a grammatical inference module.

Fig. 3. The triangle room game representation.

Table 1
Some possible constraints on player 2: at each round, player 2 either does nothing
or opens exactly one door and closes exactly one other so that the pair of closed
doors belongs to one of the sets above.

Rules Description

Opposite Doors opposite to each other can be closed at any time:
fa; dg; fa; eg; fa; f g; fb; f g; fc; eg; fe; f g

Adjacent Doors adjacent to each other can be closed at any time:
fa; bg; fa; cg; fb; cg; fb;dg; fb; eg; fc;dg; fc; f g; fd; eg; fd; f g

General Any pair of doors can be closed at any time.

3 We also considered other games with four rooms arranged grid-like so that
each room has two connecting doors and games where player 2 was subject to
different kinds of rules.
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Suppose that player 2 adheres to the Opposite rule in Table 1.
Fig. 4 (right) then shows a fragment of the SA A2 that models
player 2.

The goal of player 1 (to visit all four rooms in any order) is
described as the language accepted by As ¼ 〈S;Qp; Ts; Is; Fs〉, where
Fs ¼ f1234g. The automaton for this objective can be obtained
using the minimal dfa that recognizes the union of the shuffle

ideals4 of the permutations of the string 1234. Each transition
labeled q1 from s1 to s2 can be used to generate a set of transitions
from s1 to s2 with labels fq1g � Q2 � f0;1g. Fig. 5 shows a fragment
of As.

Fig. 4. SA for player 1 (left) and a fragment of the SA for player 2 (right). In A1, the states are the rooms and the transitions are labeled with the room that player 1 is to enter.
For A2, the states are the pairs of doors that are currently closed and a transition xy indicates that doors x and y are to be closed.

Fig. 5. A fragment of As; for clarity, a transition labeled q1 from s1 to s2 represents a set of transitions from s1 to s2 with labels fq1g � Q2 � f0;1g.

Fig. 6. A fragment of the turn-based product P ¼ A1○A2 ¼ 〈Qp ;Σ1 [ Σ2 ; Tp ;AP; LBp〉. State ðr; d1d2 ;BÞ means player 1 is in room r, doors fd1; d2g are closed, and the Boolean
variable B indicates whose turn it is.

Fig. 7. A fragment of the game automaton G¼ ðA1○A2Þ⋉As ¼ 〈V ;Σ1 [ Σ2 ; T ; I; F〉, where I¼ fðq1; q2 ;1; sÞAV ∣q1A I1; q2A I2; s¼ TsðIs; ðq1 ; q2;1ÞÞAf1;2;3;4gg and
F ¼ fðq1; q2 ;B; sÞAV ∣s¼ 1234g.

4 For w¼ σ1σ2⋯σnAΣn , the shuffle ideal of w is Σnσ1Σ
nσ2⋯ΣnσnΣn .
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The interaction functions follow from obvious physical con-
straints: when player 2 closes a door, player 1 cannot move
through it. The interaction function U2ðd1d2; rÞ gives the set of
rooms player 1 cannot access from room r because doors d1 and d2
are closed. In Fig. 3, for instance, U2ðab;1Þ ¼ f2;3g. On the other
hand, the actions of player 1 cannot inhibit the behavior of player
2 in any way, so U1ðqÞ ¼∅; 8qAQ1 � Q2. Fig. 6 shows a fragment
of A1○A2. A transition in A1○A2, for example, ð3; ad;0Þ-af ð3; af ;1Þ,
indicates that when the robot is in room 3 with doors a and d
closed, if player 2 opens d and closes f, the game reaches state
ð3; af ;1Þ at which the robot has to make a move. A fragment of the
game automaton G is shown in Fig. 7, which encodes the task
specification automaton As into A1○A2.

6.3. The winning region

Player 1 has a reachability objective, and therefore the winning
region Win1 is the attractor of F, denoted AttrðFÞ, which is obtained
by computing the fixed point of (1) on page 9 using (3) on page 14.
The game automaton, a fragment of which is shown in Fig. 7, has
309 states and so is small enough to be computed directly. On the
other hand, A1, A2, and As have 4, 6, and 16 states, respectively.
Clearly the factored representation is significantly smaller than the
game automaton.

The set of winning initial states for player 1 is shown below:

I \ AttrðFÞ ¼ fð1; ad;1;1Þ; ð1; ce;1;1Þ; ð2; ad;1;2Þ;
ð2; bf ;1;2Þ; ð4; ce;1;4Þ; ð4; bf ;1;4Þg:

Interestingly, jI \ AttrðFÞj=jIj makes up a mere 25% of all
possible initial configurations when player 2 is constrained by
the Opposite rule in Table 1. For instance, player 1 has no
winning strategy if she starts in room 3.

When different door rules are considered, cases can arise
where there is no initial state from which player 1 has a winning
strategy. In fact when player 2 is subject to the constraints of the
Adjacent and General regimes (see Table 1), player 1 can never
win, even with complete knowledge of the dynamics of player 2,
because in these games AttrðFÞ \ I¼∅.

6.4. Employing grammatical inference

We study the case where the behavior of player 2 is character-
ized as a Strictly 2-Local (SL2) language—which belongs to a
subclass of the regular languages—and player 1 is equipped with
an algorithm which identifies SL2 languages in the limit from
positive data. For the interested reader, in the Appendix we give a
brief review of SL languages and their learners.

The grammar that a SL2 learner outputs is the set of all
contiguous subsequences of length 2 (called 2-factors) that can
be found in the strings of the language. Interfacing such a learner
with a strategy planner in games requires the additional step of
extracting an automaton out of this grammar. Any grammar of 2-
factors can be converted into a dfa which recognizes the exact
same SL2 language, which may not necessarily be the canonical
acceptor for the language, but it is a normal form one (see
Appendix).

It now follows from Theorem 2 on page 19 that if player 1 is
equipped with a learning algorithm Alg that identifies SL2 lan-
guages in the limit from positive data and outputs the normal
form automaton for this class, then player 1 can identify the class
of games GAMESðA1;As;SAðAlgÞÞ in the limit from positive data.

6.4.1. Implementing the grammatical inference module
There are several ways to implement the grammatical infer-

ence in the example considered. First, there are distinct algorithms
(GIMs) for learning the SL2 class (Garcia et al., 1990; Heinz, 2008,

2010). Second, faithfully following the description in Theorem 2
suggests that the game must be recomputed with each new
hypothesis of player 2. However, performing the products with
each new hypothesis is not always necessary. In some cases, as
with the SL2 case, it is possible to reduce the number of computa-
tions by precompiling a particularly useful representation of the
hypothesis space for the game and performing computations upon
this representation. This is precisely the manner in which we
implemented the simulations. Again it serves to emphasize the
point that in many cases of interest, the worst-case computational
complexity can be significantly eased.

The basic idea behind our implementation of the learning
algorithm Alg (described in the Appendix) follows from the
observation that there is a single semiautomaton of which every
semiautomaton A2ASAðAlgÞ is a subgraph. This is the semiauto-
maton obtained from the normal form SL2 acceptor for Σn. Player
1 has this “supergraph” semiautomaton in mind, with every
transition switched “off.” The moves of player 2 correspond to
transitions in this supergraph. As those moves are observed, player
1 simply follows a path in the supergraph and switches specific
transitions on this graph to “on.” Provided a data presentation is
observed, there is a point at which the graph given by the “on”
transitions (and states connected to such transitions) is the target
semiautomaton. We then extend this concept to the entire game
automaton itself. Formally, we construct an SA that accepts
ðΣ2 n fϵgÞn and keeps track of the last symbol observed
—Að0Þ

2 ¼ 〈Q2;Σ2 n fϵg; T2〉 where Q2 ¼ Σ2 n ϵ and T2ðq2; aÞ ¼ a—and
define a labeling function LB2 : Q2-C where C is the conjunction
of literals over AP. Informally, given qAQ2 and two doors encoded
in q, d; d0, then LB2ðqÞ ¼ :½dis open�4:½d0is open�. Then we add
self-loops T2ðq; ϵÞ ¼ q, for all qAQ2. Clearly, A2 can be obtained
from Að0Þ

2 by removing transitions.
We can efficiently update player 1's hypothesis of player 2's

behavior and the game by introducing a switching function
sw : Q2 � Σ2-f0;1g. The function is initialized as swð0Þ :
ð8q2AQ2Þ½swð0Þðq2; ϵÞ ¼ 1� and for all σ labeling the outgoing
transitions from q2AQ2 and σaϵ, let swð0Þðq2; σÞ ¼ 0. Basically
swð0Þ encodes the initial hypothesis of player 1 that player 2 is
static. Let swðiÞ denote the refinement of sw made at round i and
suppose that at round iþ1, the adversary plays σ0. This suggests
ϕðiþ1Þ ¼ ϕðiÞσ0. If q2 ¼ T2ðI2;ϕðiÞÞ, then for all qAQ2 and σAΣ2,
swðiþ1Þ can be defined by

swðiþ1Þðq; σÞ ¼ swðiÞðq; σÞ if ðq; σÞa ðq2; σ0Þ
1 if ðq; σÞ ¼ ðq2; σ0Þ

(
ð4Þ

meaning that the transition from q2 on input σ0 in A2 is now
enabled. With an additional small abuse of notation, we denote
with AðiÞ

2 the pair ðAð0Þ
2 ; swðiÞÞ, which means SA Að0Þ

2 has switching
function swðiÞ. Graphically, AðiÞ

2 is the SA obtained from Að0Þ
2 by

trimming the “off” transitions (where swðiÞð�Þ ¼ 0).
Thus, the originally hypothesized game automaton is

Gð0Þ ¼ ðA1○A
ð0Þ
2 Þ⋉As. The switching function associated with AðiÞ

2
can be extended naturally to GðiÞ≔ Gð0Þ; swðiÞ

� �
in the following

way: if swðiÞðq2; σÞ ¼ 1 (resp. 0) in AðiÞ
2 , then 8vAV1 [

fvAV2∣v¼ ðq1; q2;0; sÞg we define swðiÞðv; σÞ ¼ 1 (resp. 0) in GðiÞ.
With this extension of the switching function, the game auto-
maton can be updated without computing any product during
runtime. In this particular case, the pre-compilation of the game
obviates the need to compute the turn-based product and game
automaton every time A2 is updated (see the complexity analysis
in Section 4.2). In cases where the game automaton is too big to be
computed, we expect that a similar strategy can be used with its
factors.

Remark 1. In this particular example, it happens to be the case
that the set of states in the game has a one to one correspondence
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with the physical states of the system and its dynamic environ-
ment. However, the general framework of grammatical inference
is not restricted to such cases. For example, consider a property of
the environment which specifies each door cannot be closed for
three consecutive turns, although the physical state of a closed
door does not change, in the game arena, additional states are
required for keeping track of how long a door has been kept
closed. Grammatical inference will identify the set of states in the
game, even though they are different from the world states, which
are the conjunctions of literals.

6.5. Simulations

The initial conditions—the room where player 1 begins and
which pair of doors is closed—for the game are chosen randomly.
Games are played repeatedly with the most updated game model
hypothesis that player 1 has constructed carrying over from game
to game. The simulations below use the Opposite rules for player
2. A total of 300 games were played.

The convergence of the learning algorithm is measured by
computing the ratio between transitions that are switched on
during the repeated game versus the total number of enabled
transitions in the true game automaton. Fig. 8 shows the conver-
gence of learning using the ratio of adversary transitions that have
been identified by player 1 versus the number of turns the two
players have played. From this figure, we observe that after 125
turns of both players (approximately 42 games), the robot's model
of the environment converges to the actual one. In fact, player
1 starts to win after the first 10 games. Moreover, after this point,
player 1 wins all games that began in states in her true winning
region. This result suggests that even though the model for player
2 is incomplete, the strategy synthesized by player 1 based on her

hypothesis of her opponent's behavior can still be effective. Hence,
the value of the game is ð�1;1Þ for the first 10 games and ð1; �1Þ
for the rest.

Figs. 9 and 10 provide a histogram and error chart showing the
result of 30 independent experiments, each of which is carried out
with 300 turns of two players. The standard deviation and the
numbers of minimal and maximal number of turns for the
learning algorithm to converge are shown in Fig. 10.

7. Concluding remarks

7.1. Conclusions and future work

This paper shows how particular classes of two-player, deter-
ministic, zero-sum games with perfect information can be identi-
fied in the limit, leading to sure-winning strategies for the players.
The prerequisites for this are (1) player 1 and her objective are
known, and (2) the behavior of player 2 corresponds to a language
which belongs to a class of languages identifiable in the limit from
positive presentations by a normal-form learner. Provided these
conditions hold, it is guaranteed that player 1 can compute a
strategy which converges to the true winning strategy in the limit
using positive presentations of the gameplay.

The learning results in this paper are primarily made possible
by factoring the game according to its natural subsystems – the
dynamics of player 1, the dynamics of player 2, and the objective of
player 1 – which isolates the uncertainty in the game to the model
of player 2. We also show that the winning strategy can be
computed directly from this factorization, which can allow for a
significantly more compact representation of the game, because
the subsystems structure the game in a way captured by the
product operations.

While this paper has focused on tools for learning subclasses of
regular languages, the field of grammatical inference has made
important advances in learning classes of context-free (Yokomori,
2003; Clark and Eyraud, 2007; Clark et al., 2010) and context-
sensitive (Becerra-Bonache et al., 2010; Yoshinaka, 2011) lan-
guages. Players that adopt these learning algorithms will be able
to identify behaviors that are not describable with finite-state
descriptions and which could lead to games with infinitely many
states. Infinite-state games arise in many contexts.

To extend the present research to games with imperfect
information, we plan to integrate the learning methods of partial
observable action models (the way actions affect the world) (Amir
and Chang, 2008) with grammatical inference. Future work should
also examine non-zero-sum games with multiple players, examine
the learnability of games under different learning criteria, and
explore the effectiveness of a variety of learning algorithms in
specific scenarios.

Fig. 8. The rate of convergence for the learning algorithm in a single game of 300
turns (including both players' turns.)

Fig. 9. Number of turns before convergence of the learning algorithm in 30
independent experiments.

Fig. 10. Error chart of the learning algorithm with 30 independent experiments.
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7.2. Potential application to industrial systems

Many industrial control systems are assembled from (possibly
third party) embedded components for which the exact dynamics
are not modeled or given (Mortellec et al., 2013; Whittle et al.,
2005; Feng et al., 2007; Ivancic et al., 2011). Grammatical inference
can help identify the model of components as formal objects, such
as, finite-state transition systems, automata, languages, we can
facilitate the analysis, and ensure the correctness of control design
for the overall system.

Take a particular example in the context of software verifica-
tion and model checking (Ivancic et al., 2011). State of the art
automated model checkers which verify that pieces of software
with millions of lines of code are bug-free, usually employ a
divide-and-conquer strategy: since bugs may lurk deep inside the
hierarchy of processes that call each other, current computational
resources of model checkers may not be sufficient to catch these
bugs in a brute-force exhaustive search from the initial condition.
Then, model checkers can start from a particular process deep
inside the derivation tree, and explore from that point forward
until they reach a pre specified depth cutoff limit (Ivancic et al.,
2011). In such instances, the software verification tool needs to
have a model of the environment that calls the process where it
starts working from (referred to as the calling environment). It is
often the case that large scale software architectures embody
pieces of code from third parties, of which the input–output
behavior is not known exactly. In these model checking applica-
tions, which can range from database management to aircraft
control software, there is a practical need to construct and refine
the calling environment model. The reported methodology may be
useful in this large-scale model checking context, by treating the
entry function and its calling environment as two adversaries, and
contribute to the technology for calling environment model
refinement.

Although in this paper we consider the formulation of a zero-
sum game between a control plant and its dynamic environment,
due to the independence between the learning module and the
control synthesis, the grammatical inference module is not limited
to adversarial interactions between components. With learning,
we extract the inter-dependencies and interactions between
different components, which are necessary for system integration
and analysis.
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Appendix

A string u is a factor of string w iff (x; yAΣn such that w¼xuy. If
in addition juj ¼ k, then u is a k-factor of w. The k-factor function
factork : Σ

n-2Σr k
maps a word w to its set of k-factors if jwj4k;

otherwise it maps w to fwg. This function is extended to languages
as factorkðLÞ≔⋃wA LfactorkðwÞ. A language L is Strictly k-Local (SLk)
if there exists a finite set GD factorkð♯Σn♯Þ, such that
L¼ fwAΣn∣factorkð♯w♯ÞDGg, where ♯indicates the beginning and
end of a string. G is the grammar that generates L.

A language is called Strictly Local if it is Strictly k-Local for some
k. There are many distinct characterizations of this class. For
example, it is equivalent to the languages recognized by (general-
ized) Myhill graphs, to the languages definable in a restricted
propositional logic over a successor function, and to exactly those
languages which are closed under suffix substitution (McNaughton

and Papert, 1971; De Luca and Restivo, 1980; Rogers and Pullum,
2011). Furthermore, there are known methods for translating
between automata-theoretic representations of Strictly Local lan-
guages and these others.

Theorem 3 ((Garcia et al., 1990)). For known k, the Strictly k-Local
languages are identifiable in the limit from positive data.

Readers are referred to the cited papers for a proof of this theorem.
We sketch the basic idea here with the grammars for Strictly
k-Local languages defined above. Consider any LASLk. The gram-
mar for L is G¼ factorkðf♯g � L � f♯gÞ,5 and G contains only finitely
many strings. The learning algorithm initially hypothesizes G¼∅,
and for each word wAL, computes factorkðwÞ to add these k-factors
to its current hypothesized grammar. There will be some finite
point in every data presentation of L such that the learning
algorithm converges to the grammar of L (because jGj is finite).
This particular algorithm is analyzed by Heinz (2010) and is a
special case of lattice-structured learning (Heinz et al., 2012).

This learning algorithm does not output finite-state automata,
but sets of factors. However, there is an easy way to convert any
grammar of factors into an acceptor which recognizes the same
Strictly Local language. This acceptor is not the canonical acceptor
for this language, but it is a normal form. It is helpful to define a
function sufkðLÞ ¼ fvAΣk∣ð(wALÞ½ð(uAΣnÞ½w¼ uv��g. Given k and a
set of factors GD factorkðf♯g � Σn � f♯gÞ, construct a finite-state accep-
tor AG ¼ 〈Q ;Σ; T ; I;Acc〉 as follows.

� Q ¼ sufk�1ðPrðLðGÞÞÞ
� ð8uAΣr1Þð8σAΣÞð8vAΣnÞ½Tðuv; σÞ ¼ vσ3uv; vσAQ �
� I ¼ fλg if LðGÞa∅ else ∅
� Acc¼ sufk�1ðLðGÞÞ

The proof that LðAGÞ ¼ LðGÞ is given in Heinz (2007, p.106).
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